{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python-tasks\n", "\n", "Python tasks are Python functions that are parameterised in a separate step before\n", "they are executed or added to a workflow.\n", "\n", "## Define decorator\n", "\n", "The simplest way to define a Python task is to decorate a function with `pydra.compose.python.define`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pydra.compose import python\n", "\n", "\n", "# Note that we use PascalCase because the object returned by the decorator is actually a class\n", "@python.define\n", "def MyFirstTask(a, b):\n", " \"\"\"Sample function for testing\"\"\"\n", " return a + b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The resulting task-definition class can be then parameterized (instantiated), and\n", "executed" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Instantiate the task, setting all parameters\n", "my_first_task = MyFirstTask(a=1, b=2.0)\n", "\n", "# Execute the task\n", "outputs = my_first_task()\n", "\n", "print(outputs.out)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, the name of the output field for a function with only one output is `out`. To\n", "name this something else, or in the case where there are multiple output fields, the `outputs`\n", "argument can be provided to `python.define`\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@python.define(outputs=[\"c\", \"d\"])\n", "def NamedOutputTask(a, b):\n", " \"\"\"Sample function for testing\"\"\"\n", " return a + b, a - b\n", "\n", "\n", "named_output_task = NamedOutputTask(a=2, b=1)\n", "\n", "outputs = named_output_task()\n", "\n", "print(outputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The input and output field attributes automatically extracted from the function, explicit\n", "attributes can be augmented" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@python.define(\n", " inputs={\"a\": python.arg(allowed_values=[1, 2, 3]), \"b\": python.arg(default=10.0)},\n", " outputs={\n", " \"c\": python.out(type=float, help=\"the sum of the inputs\"),\n", " \"d\": python.out(type=float, help=\"the difference of the inputs\"),\n", " },\n", ")\n", "def AugmentedTask(a, b):\n", " \"\"\"Sample function for testing\"\"\"\n", " return a + b, a - b" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Type annotations\n", "\n", "If provided, type annotations are included in the task, and are checked at\n", "the time of parameterisation." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pydra.compose import python\n", "\n", "\n", "@python.define\n", "def MyTypedTask(a: int, b: float) -> float:\n", " \"\"\"Sample function for testing\"\"\"\n", " return a + b\n", "\n", "\n", "try:\n", " # 1.5 is not an integer so this should raise a TypeError\n", " my_typed_task = MyTypedTask(a=1.5, b=2.0)\n", "except TypeError as e:\n", " print(f\"Type error caught: {e}\")\n", "else:\n", " assert False, \"Expected a TypeError\"\n", "\n", "# While 2 is an integer, it can be implicitly coerced to a float\n", "my_typed_task = MyTypedTask(a=1, b=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## Docstring parsing\n", "\n", "Instead of explicitly providing help strings and output names in `inputs` and `outputs`\n", "arguments, if the function describes the its inputs and/or outputs in the doc string, \n", "in either reST, Google or NumpyDoc style, then they will be extracted and included in the\n", "input or output fields\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pydra.utils import print_help\n", "\n", "\n", "@python.define(outputs=[\"c\", \"d\"])\n", "def DocStrExample(a: int, b: float) -> tuple[float, float]:\n", " \"\"\"Example python task with help strings pulled from doc-string\n", "\n", " Args:\n", " a: First input\n", " to be inputted\n", " b: Second input\n", "\n", " Returns:\n", " c: Sum of a and b\n", " d: Product of a and b\n", " \"\"\"\n", " return a + b, a * b\n", "\n", "\n", "print_help(DocStrExample)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Wrapping external functions\n", "\n", "Like all decorators, `python.define` is just a function, so can also be used to convert\n", "a function that is defined separately into a Python task." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "NumpyCorrelate = python.define(np.correlate)\n", "\n", "numpy_correlate = NumpyCorrelate(a=[1, 2, 3], v=[0, 1, 0.5])\n", "\n", "outputs = numpy_correlate()\n", "\n", "print(outputs.out)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like with decorated functions, input and output fields can be explicitly augmented via\n", "the `inputs` and `outputs` arguments" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "NumpyCorrelate = python.define(np.correlate, outputs=[\"correlation\"])\n", "\n", "numpy_correlate = NumpyCorrelate(a=[1, 2, 3], v=[0, 1, 0.5])\n", "\n", "outputs = numpy_correlate()\n", "\n", "print(outputs.correlation)" ] } ], "metadata": { "kernelspec": { "display_name": "wf13", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.1" } }, "nbformat": 4, "nbformat_minor": 2 }